USN						
USIN		100				

10CS74

Seventh Semester B.E. Degree Examination, Dec.2015/Jan.2016 **Advanced Computer Architecture**

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART-A

- Define the computer architecture. Explain the Bandwidth over Latency, and Benchmarks. Name of Street
 - Briefly explain the Amdahl's law.

(06 Marks) (08 Marks)

- Assume a disk subsystem with the following components and MTTF:
 - i) 10 disks, each rated at 1,000,000 hour MTTF
 - ii) 1 SCSI controller, 5,00,000 hour MTTF
 - iii) 1 power supply, 2,00,000 hour MTTF
 - iv) 1 fan, 2,00,000 hour MTTF
 - v) 1SCSI cable, 1,000,000 hour MTTF.

Using the simplifying assumptions that the lifetimes are exponentially distributed and that failure are independent, compute the MTTF of the system as a whole. (06 Marks)

- What is pipelining? List pipeline hazards. Explain any two in details. 2 (10 Marks) List and explain five different ways of classifying exception in a computer system.

(10 Marks)

List the steps to unroll the code and schedule. 3

- (04 Marks)
- What is the drawback of 1 bit dynamic branch prediction method? Clearly state, how to overcome in 2 – bit prediction. Give the state transition diagram of 2 – bit predictor.

(06 Marks)

- With a neat diagram, give the basic structure of Tamasulo based MIPS FP unit and explain the various fields of reservation stations. (10 Marks)
- Explain the basic VLIW approach List its drawbacks.

(10 Marks)

With a neat diagram, explain the steps involved in handling an instruction, with a branch target buffer. (10 Marks)

PART - B

With a neat diagram, explain the basic structure of a centralized shared - memory and distributed memory multiprocessor. (08 Marks)

b. Define multiprocessor cache coherence.

(02 Marks)

- c. Explain the basic schemes of enforcing coherence in a shared memory multiprocessor system. (10 Marks)
- a. Explain the six basic cache optimization techniques. b. How to protect virtual memory and virtual machines?

(12Marks) (08 Marks)

- Assume we have a computer where the clock per instruction (CPI) is 1.0 when all memory accesses hit in the cache. The only data accesses are loads and stores, and these total 50% of the instructions. If the miss penalty is 25 clock cycles and the miss rate is 2%, how much faster would the computer be if all instructions were cache hits? (10 Marks)
 - b. Explain in detail, the architecture support for protecting processes from each other via virtual memory.
- Explain in detail the hardware support for preserving exception behavior during speculation 8 (10 Marks)
 - Write short notes on:
 - i) The Itanium 2 processor

(05 Marks)

ii) IA – 64 register model

(05 Marks)